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Abstract

A homogenization approach to assess the mechanical characteristics of masonry structures is presented in this paper.

In order to analyze an actual masonry, the concept of periodic cell, used in literature for periodic masonry, is replaced

with that of representative volume element. This volume is found by employing a formulation based on finite size test-

windows. The homogenized medium stiffness tensor is obtained by considering the hierarchy of estimates relative to

essential and natural boundary conditions. Moreover an ensemble average is performed on space taking into account

different test-windows location on the given structure. An application shows the effectiveness of the proposed

approach.
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1. Introduction

The analysis of the masonry structures has received great interest in last decades. This is partly related to

the application of brickwork for new structures. In fact, the main interesting aspect is linked to analyzing

historical and monumental buildings made of masonry material (stone masonry or brickwork).

In literature, two different approaches have been proposed: the discrete models and the continuous

models.
Employing the finite element technique, the discrete models describe the masonry by using the actual

physical and geometrical properties of block units and mortar joints (Page, 1978). However, these ap-

proaches have serious limitations relative to ill-conditioned and/or non-stable numerical solutions and to the

impracticability in the context of large-scale masonry structures as stated by Pietruszczak and Niu (1992).

In the case of continuous models, the behavior of masonry has been described by phenomenological law

(Heymann, 1966; Giaquinta and Giusti, 1985) or in the framework of micromechanics theory.

In the latter, the masonry is modeled as a heterogeneous material composed by bricks in a matrix of

mortar. The homogenization techniques allow to define a homogeneous body in order to study the linear
and non-linear behavior of the masonry.
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Nevertheless, the techniques proposed in literature adopt the hypothesis of ‘‘periodic-structure’’ for the

masonry. This involves assuming bricks, head and bed mortar joints of equal dimensions and character-

istics. Moreover, these components must be arranged in a periodic pattern. However, this hypothesis can be

accepted for new structures only. The periodic approach is surely incorrect for a very large number of
existing masonry structures, which vice versa have a great cultural and social interest such as in maintaining

and restoring historical and monumental buildings. In order to apply the homogenization theory to old

masonry, a different approach is necessary.

This aspect is the main topic here. The paper is written in the following sequence. First, the main results

in literature about homogenization of masonry are briefly illustrated, underlining the periodicity hypo-

thesis. Then the fundamentals of the mechanics of non-periodic composites are reviewed. This will allow to

introduce the proposed homogenization method based on ‘‘test-windows’’. The application of the method

is showed by a numerical example considering an actual masonry wall.
2. Periodic masonry structures

Given a heterogeneous body made of materials with different properties and geometry, the homogeni-
zation technique allows to obtain an ‘‘equivalent body’’ (Sanchez-Palencia and Zaoui, 1987; Suquet, 1982).

The first approach to the homogenization of the masonry material is due to Pande et al. (1989).

Assuming continuous head joints and no-slippage between the mortar layers and brick units, the expres-

sions for the elastic properties of the equivalent material were derived in terms of the elastic proprieties of

the brick and mortar together with relative thickness. The proposed homogenization procedure is per-

formed in several steps and its result depends on the sequence of the successive steps (Geymonat et al.,

1987).

In order to describe the average mechanical properties, Pietruszczak and Niu (1992) proposed to
address the influence of head and bed joint separately (concept of a superimposed medium). Considering

the head joints, the homogenized medium was regarded as an orthotropic elastic–brittle material and the

mechanical properties were determined from Eshelby�s (1957) solution to an ellipsoidal inclusion problem

combined with Mori–Tanaka�s mean-field theory (Mori and Tanaka, 1973). Representing the masonry by

a medium stratified with a family of bed joints, which form the weakest link in the microstructure of the

system, the average constitutive relation for the entire composite system was obtained from the aver-

aging rule (Hill, 1963). Under simplified hypothesis about microstructure geometry and micro–macro

quantities relationships, constitutive laws for the homogenized material were also proposed by Maier
et al. (1991).

In order to overcome the previous simplifying hypothesis, Anthoine (1995) proposed a rigorous appli-

cation of the homogenization theory for the periodic media, based on asymptotic analysis (Bensoussan

et al., 1978; Sanchez-Palencia, 1980). Following this approach, the periodicity is characterized by a frame of

reference and it is sufficient to define the mechanical characteristics of the media on a small domain (cell) to

be repeated by translation. The proposed numerical approach for deriving the global elastic coefficients of

masonry takes into account the elasticity of both constituents (brick and mortar) as well as the finite

thickness of the joints.
The constitutive behavior of in plane loaded dry block masonry, with attention to failure analysis, was

analyzed by Alpa and Monetto (1994).

Using the homogenization technique implemented within the framework of the yield design, an ap-

proach to the ultimate strength of brick masonry was proposed by De Buhan and De Felice (1997). In

particular, the masonry was described by a regular assemble of homogeneous brick, obeying a plane stress

failure, separated by joints considered as one-dimensional interface.
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A masonry damage model due to the growth of fractures only in mortar joints was proposed by Luciano

and Sacco (1997, 1998a). In this work, the homogenization theory for material with periodic microstructure

was used to define the overall moduli of the uncracked and cracked masonry (Luciano and Sacco, 1997,

1998b).
A body exhibiting periodic structure is also introduced by Cecchi and Di Marco (2000) and Cecchi and

Sab (2002) to analyze the effect of rigid or elastic blocks in the homogenization of masonry wall.

The previous approaches are based on the periodic structure hypothesis: this involves assuming masonry

formed by regular blocks, with fixed dimensions, and interposed bed and head of mortar. The pattern

formed by the arrangement of bricks and bed of mortar is periodic. However, these features can only be

followed in a new masonry.

When we analyze an old masonry, we find that it is formed by blocks of different dimensions that are

arranged in a non-periodic pattern, with the mortar joints assuming different thickness. In order to apply
the homogenization theory to this type of masonry it is necessary to use a different approach.
3. Fundamentals of the mechanics of non-periodic composites

3.1. Representative volume element

Considering a random composite, the concept of periodic cell, is replaced with that of representative
volume element (RVE): it is defined as a portion of the composite material with the following features

(Aboudi, 1991; Christensen, 1980):

1. Structurally, it is entirely typical of the whole composite on average;

2. Contains a sufficient number of material phases.

If the material is under a macroscopically uniform homogeneous state of stress, i.e. all the material

portions having the dimensions of the RVE undergo the same loading conditions, then for scales smaller
than RVE the actual arrangement of bricks and mortar joints can be considered, whereas for scales greater

than RVE, the composite can be replaced with an homogenized material.

The properties of the homogenized material can be determined by analyzing the RVE: in detail, a

relation between the average values of stresses and strains is established. These average values are defined

as:
�eij ¼
1

V

Z
V
eij dV

�rij ¼
1

V

Z
V
rij dV

ð1Þ
These properties can be found by applying a different kind of conditions on the boundary of the RVE.

The boundary conditions can be applied:

(A) in terms of displacements ui,
ui ¼ e0ijxj ð2Þ
where e0ij are constant strains and xj are point coordinates, or

(B) in term of tractions ti,
ti ¼ r0
ijnj ð3Þ
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where r0
ij are constant stresses and nj are the components of the unit outward normal vector to

boundary.

The strains average values in conditions (A) are �eij ¼ e0ij while stresses average values in conditions (B)
are �rij ¼ r0

ij. If it�s possible to find the values of average stresses in case (A) and of average strains in case

(B), the elastic stiffness constants C�
ijkl (in the latter case the elastic compliances S�

ijkl), are obtained by:
ðAÞ �rij ¼ C�
ijkl�ekl

ðBÞ �eij ¼ S�
ijkl�rkl

ð4Þ
For a material composed by two phases, such as masonry, the following expressions for average stresses

and strains are obtained (apex ðkÞ indicates the quantity relative to phase k):
�rij ¼ c1�r
ð1Þ
ij þ c2�r

ð2Þ
ij

�eij ¼ c1�e
ð1Þ
ij þ c2�e

ð2Þ
ij

ð5Þ
where c1 and c2 are the fractional concentrations by volume of phases 1 and 2 respectively, and c1 þ c2 ¼ 1.

By writing the relations between stresses and strains in the phases as
rð1Þ
ij ¼ Cð1Þ

ijklekl; eð1Þij ¼ Sð1Þ
ijklrkl

rð2Þ
ij ¼ Cð2Þ

ijklekl; eð2Þij ¼ Sð2Þ
ijklrkl

ð6Þ
the following relations between the global average stresses and the average strains in the two phases (and

the analogous between the global average strains and the average stresses in the two phases) can be written:
�rij ¼ c1C
ð1Þ
ijkl�e

ð1Þ
kl þ c2C

ð2Þ
ijkl�e

ð2Þ
kl

�eij ¼ c1S
ð1Þ
ijkl�r

ð1Þ
kl þ c2S

ð2Þ
ijkl�r

ð2Þ
kl

ð7Þ
By writing the relations between the averages on the single phase and the global average as
�eð1Þij ¼ Að1Þ
ijkl�ekl; �eð2Þij ¼ Að2Þ

ijkl�ekl

�rð1Þ
ij ¼ Bð1Þ

ijkl�rkl; �rð2Þ
ij ¼ Bð2Þ

ijkl�rkl

ð8Þ
ðAð1Þ, Að2Þ, Bð1Þ, Bð2Þ are concentration matrices, where c1A
ð1Þ þ c2A

ð2Þ ¼ I and c1B
ð1Þ þ c2B

ð2Þ ¼ I, I being the

unit matrix) it is found that
C�
ijkl ¼ c1C

ð1Þ
ijklA

ð1Þ
ijkl þ c2C

ð2Þ
ijklA

ð2Þ
ijkl

S�
ijkl ¼ c1S

ð1Þ
ijklB

ð1Þ
ijkl þ c2S

ð2Þ
ijklB

ð2Þ
ijkl

ð9Þ
where C� and S� of the homogenized medium are defined in terms of the stiffness of the individual phases.

Since the above operations are done on RVE, it is found that C� ¼ ðS�Þ�1
. Nevertheless, equations from

(1)–(9) hold for every portion of heterogeneous material, but in this case it is found that the values of C�

and ðS�Þ�1
are different.

By assuming particular values of the concentration matrices, approximate values of the effective stiffness

and compliances can be found.

Voight proposed that the strain in the composite be uniform, so Að1Þ ¼ Að2Þ ¼ I.

This yields:
CV
ijkl ¼ c1C

ð1Þ
ijkl þ c2C

ð2Þ
ijkl ð10Þ
Reuss proposed that the stress in the composite be uniform, so Bð1Þ ¼ Bð2Þ ¼ I.
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This yields:
SR
ijkl ¼ c1S

ð1Þ
ijkl þ c2S

ð2Þ
ijkl ð11Þ
It should be noted that neither of the two assumptions is correct: Voight�s violates equilibrium, while

Reuss�s violates compatibility.

Nevertheless, these two values can still be useful: in fact Hill�s theorem demonstrates that these two

values set limits to the range where the actual stiffness can be found. Writing Voight�s with CV, Reuss�s with
CR ðCR ¼ ðSRÞ�1Þ and with C the actual stiffness, the following chain of inequalities rules:
CR
6C6CV ð12Þ
where the order relation X6Y means that zTXz6 zTYz for any vector z 6¼ 0. Anyway, this range is too

wide, in most cases, to be of practical interest, such closer limits have to be determined. In any case, these

limits are still useful to check the correctness of the proposed procedure.

3.2. The solution in terms of boundary conditions

3.2.1. Essential boundary conditions

By applying at RVE the boundary conditions in terms of displacements as given in (2) the following
relation between stiffness and average strains can be found:
Ce
ijkle

0
kl ¼ Ce

ijkl�ekl ¼ �rij ¼ c1�r
ð1Þ
ij þ c2�r

ð2Þ
ij ¼ c1C

ð1Þ
ijkl�e

ð1Þ
kl þ c2C

ð2Þ
ijkl�e

ð2Þ
kl ¼ Cð1Þ

ijklðe0kl � c2�e
ð2Þ
kl Þ þ c2C

ð2Þ
ijkl�e

ð2Þ
kl

¼ Cð1Þ
ijkle

0
kl þ c2ðCð2Þ

ijkl � Cð1Þ
ijklÞ�e

ð2Þ
kl ð13Þ
(note that stiffness is identified with the over script ‘‘e’’, because it is determined under essential conditions,

while Cð1Þ and Cð2Þ are the actual stiffness of the two phases).

Assuming for e0 the matrix Imn, where Imn is the matrix with all the components set at 0 except for the

component (mn) which is set at 1, it is found that
Ce
ijmn ¼ Cð1Þ

ijmn þ c2ðCð2Þ
ijkl � Cð1Þ

ijklÞ�e
mnð2Þ
kl ð14Þ
where �emnð2Þkl is the average strain in phase 2 when boundary conditions ui ¼ Imnij xj are applied.
If is easier to work with stresses rather than with strains, Eq. (14) is transformed into
Ce
ijmn ¼ Cð1Þ

ijmn þ c2ðCð2Þ
ijkl � Cð1Þ

ijklÞS
ð2Þ
klrt�r

mnð2Þ
rt ð15Þ
where �rmnð2Þ
kl is the average stress in phase 2.

It is worth noting that, in order to determine all the components of Ce we must use 6 (in the case of space

problem) or 3 (in the case of plane problem) different matrices Imn, which forms a base for all the possible

values of e0 (i.e. e0 can be expressed as e0 ¼ k11I
11 þ k12I

12 þ k13I
13 þ k22I

22 þ k23I
23 þ k33I

33).

3.2.2. Natural boundary conditions

By applying at the boundary of the test-window conditions in terms of tractions as given in (3) the

following relation between stiffness and average stresses can be found:
Sn
ijklr

0
kl ¼ Sn

ijkl�rkl ¼ �eij ¼ c1�e
ð1Þ
ij þ c2�e

ð2Þ
ij ¼ c1S

ð1Þ
ijkl�r

ð1Þ
kl þ c2S

ð2Þ
ijkl�r

ð2Þ
kl ¼ Sð1Þ

ijklðr0
kl � c2�r

ð2Þ
kl Þ þ c2S

ð2Þ
ijkl�r

ð2Þ
kl

¼ Sð1Þ
ijklr

0
kl þ c2ðSð2Þ

ijkl � Sð1Þ
ijklÞ�r

ð2Þ
kl ð16Þ
(note that compliance is identified with the over script ‘‘n’’, because it is determined under natural con-

ditions, while Sð1Þ and Sð2Þ are the actual compliances of the two phases).
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Assuming for r0 the matrix Imn as defined before, it is found that
Sn
ijmn ¼ Sð1Þ

ijmn þ c2ðSð2Þ
ijkl � Sð1Þ

ijklÞ�r
mnð2Þ
kl ð17Þ
where �rmnð2Þ
kl is the average stress in phase 2 when boundary conditions ti ¼ r0

ijnj are applied.

To find the stiffness Cn it is necessary to invert the compliance, Cn ¼ ðSnÞ�1
.

4. Homogenization of quasi-periodic masonry––the ‘‘test-window’’ method

It is difficult to identify RVE in old masonry. In fact, for a periodic structure, a periodic cell which, by

opportune translations, generates the whole structure, is used (Anthoine, 1995). In composite material such

as fiber-reinforced ones, it is sufficient to choose a relatively large portion of material, depending on the size

of the inclusions (Ostoja-Starzewski, 1998), to determine the RVE. The definition of the material statistical

homogeneity and the proof of convergence to RVE as the material sample size approaches infinity are

addressed in Huet (1990) and in Sab (1992).

Vice versa, in old masonry the inclusions (the bricks or stones) in the matrix (the mortar) can assume

different relative dimensions and arrangement, depending on the portion of masonry analyzed. So the
masonry can be defined as a ‘‘quasi-periodic’’ material, and the identification of the RVE is not possible a

priori (Fig. 1).
Fig. 1. RVE identification versus material periodicity.
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The method here developed to find the RVE is an iterative one:

1. the first step is to choose the dimensions of a rectangle, the test-window;

2. the test-window is then placed inside masonry and a portion of material (which contains both phases) is
analyzed; it should be noted that the position of the test-window is arbitrary;

3. the next step is to determine the values of the stiffness by assuming boundary conditions in terms of dis-

placements, or essential conditions (14) and (15), and in terms of tractions, or natural conditions (17).

The values obtained using essential conditions differ from those obtained under natural conditions,

and it has been found that Cn
6Ce in agreement with Huet (1990) and Sab (1992);

4. steps 2 and 3 are repeated for different positions of the test-window inside the masonry;

5. then, the average of the Cn and Ce found for the different positions is calculated, and the values ÆCn æ and
ÆCeæ are obtained;

6. the effective elastic stiffness components are estimated by:
eC
 �
ij ¼

hCniij þ hCeiij
2

ð18Þ
The range amplitude d is defined as
d ¼ max
ij

hCeiij � hCniijeC�
ij

�����
����� ð19Þ
7. the next step is to choose new increased dimensions for the test-window, and to repeat steps from 2 to 6;

8. the iteration is stopped when d is sufficiently small, which is to say that ÆCnæ and ÆCeæ are sufficiently
close.

It should be noted that, in general, ÆCnæ and ÆCeæ do not define a range in which the effective value of

stiffness C� can be found. As the dimensions of the test-window increase, ÆCnæ and ÆCe æ converge to C�,

which can be estimated by eC�.

The test-window is placed in different positions inside the masonry to overcome the quasi-periodicity

of the material: in fact, both in the case of periodic and non-periodic material, the position on the win-

dow does not affect the result, and one could concentrate only on the variation of the dimensions of the
window.
5. Application

The proposed method was applied to determine the stiffness of an actual masonry wall made up of stones

arranged with bed and head of mortar (Fig. 2(a)). The method is applied under the hypothesis of plane

stress. In this way, the problem is completely defined by the three components of stress r11, r22 and r12 and
by the three components of strain e11, e22 and e12.

The masonry object of the study has the following features:

(a) it has an irregular pattern, i.e. the constitutive blocks of stone have different dimensions, although all

the blocks belonging to the same row are about the same height; furthermore, the dimensions do not

change very much when different rows are considered;

(b) the shape of the stones is quite rectangular: it is worth noting that the roundness at the corner of the

brick does not affect the stiffness of the composite in a significant way (Cuomo and Perticone, 1996),
but it increases the difficulties in modeling the masonry.



Fig. 2. (a) The masonry wall; (b) Simplified geometrical pattern.
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Before applying the test-window method, a few steps are necessary to set up the model: the masonry is
first geometrically simplified, i.e. all the block are assumed rectangular and the thickness of the bed of

mortar constant (Fig. 2(b)).

To solve the problem in terms of essential and natural conditions, the FEM is used. The components of

the masonry are assumed to have the elastic properties reported in Table 1.

At first the test-window has small dimensions, but still quite large to contain both stone and mortar

elements. The window is then placed in various positions inside the masonry (four in the present appli-

cation, as in Fig. 3(a)).

The portion of masonry enclosed by any window, with its arrangement of stone and mortar, is then
extracted from the whole and analyzed alone. This portion is modeled with a mesh of finite elements of two
Table 1

Mechanical properties of the masonry phases

Phase Material Young�s module,

E (MPa)

Poisson�s
coefficient, m

Stiffness components (MPa)

C11 C12 C22 C33

1 Stone 12,500 0.20 13,021 2604 13,021 10,417

2 Mortar 1200 0.30 1319 396 1319 923



Fig. 3. Position of the test-windows inside the masonry wall: (a) test-windows dimensions 150· 150 mm; (b) 225· 225 mm; (c) 300· 300
mm; (d) 375· 375 mm.

Fig. 4. Finite element model of the test-window 150· 150 mm in position D (see Fig. 3): elements type 1 are stone material, type 2 are

mortar material.
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types, one representing the stone material (phase 1) and the other the mortar material (phase 2). Fig. 4

shows the model of the test-window in position D. It is worth noting that the amount of stone and mortar

enclosed by the windows depends on the position of the window, so different values of Reuss�s and Voight�s
limits are obtained for different positions.



Fig. 5. Boundary conditions of the test-window: (a) essential conditions (in terms of nodal displacements); (b) natural conditions

(in terms of nodal forces).

Table 2

Components of the stiffness tensor (MPa) at the different positions and for increasing size of the test-window (see Fig. 3): (a) test-

windows dimensions 150· 150 mm; (b) 225· 225 mm; (c) 300· 300 mm; (d) 375· 375 mm

Essential Natural Estimates

ij Posi-

tion A

Posi-

tion B

Posi-

tion C

Posi-

tion D

ÆCeæ Posi-

tion A

Posi-

tion B

Posi-

tion C

Posi-

tion D

ÆCnæ eC� d

(a)

11 6758 9035 10,405 10,390 9147 5693 7985 8960 8570 7802 8475 0.159

12 947 1385 1238 1401 1243 873 1177 1060 1222 1083 1163 0.137

22 5586 7791 5809 7153 6585 5048 6675 4673 6417 5703 6144 0.143

33 4344 6535 5846 6304 5757 3390 4745 3822 4871 4207 4982 0.311

(b)

11 8377 8980 8545 9506 8852 7463 8237 7867 8500 8017 8434 0.099

12 1250 1166 1124 1456 1249 1118 1082 1046 1311 1139 1194 0.092

22 7223 6267 6189 8214 6973 6511 5719 5781 7652 6416 6695 0.083

33 5702 5297 5139 6484 5656 4594 4367 4203 5465 4657 5156 0.194

(c)

11 8114 8241 9143 8057 8389 7361 7654 8538 7509 7766 8077 0.077

12 1162 1179 1290 1063 1174 1082 1110 1199 1001 1098 1136 0.066

22 6880 6927 7222 5942 6743 6478 6520 6698 5394 6273 6508 0.072

33 5266 5368 5857 4824 5329 4487 4604 4884 4009 4496 4912 0.170

(d)

11 7518 7969 8810 8630 8232 6886 7614 8408 8164 7768 8000 0.058

12 1063 1056 1122 1159 1100 1000 1012 1069 1082 1041 1070 0.055

22 6347 6005 6136 6440 6232 5927 5612 5693 6095 5832 6032 0.066

33 4750 4750 5044 5160 4926 4124 4138 4305 4499 4267 4596 0.143
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Table 3

Components of the stiffness tensor (MPa) of the entire panel

ij Essential Ce Natural Cn EstimateseC� d

11 7992 7889 7940 0.013

12 1023 1016 1020 0.007

22 5691 5596 5644 0.017

33 4149 3912 4030 0.059

Fig. 6. Stiffness coefficients (MPA) ÆCeæ (r), ÆCnæ (m) and eC� (j) versus test-window size increasing and of the entire panel.
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In order to calculate Ce and Cn two different restraint and load conditions are considered.

In the first, essential conditions at the boundary in terms of (2) are applied: all the nodes of the boundary

are restrained and then assigned displacements. In the second, natural conditions at the boundary in terms

of (3) are applied: forces on all the nodes of the boundary are applied.
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Furthermore, it is necessary to run the analysis three times for each model, since three different matrices

Imn are required to determine the nine components of Ce and Cn (Fig. 5).

Adopting finite elements of the same size (Fig. 4) the mean values of the stresses and the fraction

concentration c2 are immediately calculated. Given the stone and mortar characteristics (Table 1), the Ce

and Cn stiffness are obtained by means of (15) and (17) respectively.

In this way Ce and Cn for the assigned dimensions of test-window and for the different positions of the

test-window inside the masonry are available. The averages ÆCeæ and ÆCnæ can be calculated, as the esti-

mated stiffness eC� and the range amplitude d by means of (18) and (19).

When d is smaller than a prefixed value dtol, the value of eC� can be used as characteristic of the masonry,

C� ¼ eC�. Otherwise, the dimensions of the test-window are increased and new calculations are done.

In the present application, the procedure has been iterated four times, with the dimensions illustrated in

Fig. 3 (it should be noted that, although the test-window was increased in size, its position inside the
masonry is fixed). The obtained results for essential and natural conditions are reported in Table 2. In order

to assess accuracy of the proposed approach, the Ce and Cn of the entire masonry panel have been obtained

by applying the same boundaries conditions. The results are reported in Table 3.

The estimation of the stiffness components versus the test-window dimensions increasing and of the

entire panel (with dimensions: 1657.5 · 690 mm) are shown in Fig. 6. It should be noted that after four

iteration a good convergence is reached.
6. Conclusions

In this paper, a homogenization approach has been proposed to analyze quasi-periodic masonry

structures. This approach is based on the concept of RVE which replaces the periodic cell one proposed in

literature for periodic pattern.
The RVE is found by using test-window method and by increasing its finite dimensions.

Then the homogenized medium stiffness tensor is obtained by means of the hierarchy of estimates rel-

ative to essential and natural boundary conditions with an ensemble average, which is performed on space

taking into account different test-window locations on structure. This allows to consider the local heter-

ogeneity of microstructure, increasing the convergence rate and estimates reliability in this way.

A numerical application highlights the effectiveness of the method. In fact, the variation range of the

stiffness tensor coefficients was very narrow in limited number of iterations.

The obtained results showed that proposed approach can be used to analyze actual masonry built with
blocks having different dimensions, mortar joints having different thickness, which are arranged in a quasi-

periodic pattern. Moreover, it can be easily applied to tri-dimensional elastic problem by considering

masonry structures with mechanical and geometrical properties varying in thickness.
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