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Abstract

A homogenization approach to assess the mechanical characteristics of masonry structures is presented in this paper.
In order to analyze an actual masonry, the concept of periodic cell, used in literature for periodic masonry, is replaced
with that of representative volume element. This volume is found by employing a formulation based on finite size test-
windows. The homogenized medium stiffness tensor is obtained by considering the hierarchy of estimates relative to
essential and natural boundary conditions. Moreover an ensemble average is performed on space taking into account
different test-windows location on the given structure. An application shows the effectiveness of the proposed
approach.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of the masonry structures has received great interest in last decades. This is partly related to
the application of brickwork for new structures. In fact, the main interesting aspect is linked to analyzing
historical and monumental buildings made of masonry material (stone masonry or brickwork).

In literature, two different approaches have been proposed: the discrete models and the continuous
models.

Employing the finite element technique, the discrete models describe the masonry by using the actual
physical and geometrical properties of block units and mortar joints (Page, 1978). However, these ap-
proaches have serious limitations relative to ill-conditioned and/or non-stable numerical solutions and to the
impracticability in the context of large-scale masonry structures as stated by Pietruszczak and Niu (1992).

In the case of continuous models, the behavior of masonry has been described by phenomenological law
(Heymann, 1966; Giaquinta and Giusti, 1985) or in the framework of micromechanics theory.

In the latter, the masonry is modeled as a heterogeneous material composed by bricks in a matrix of
mortar. The homogenization techniques allow to define a homogeneous body in order to study the linear
and non-linear behavior of the masonry.
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Nevertheless, the techniques proposed in literature adopt the hypothesis of “periodic-structure” for the
masonry. This involves assuming bricks, head and bed mortar joints of equal dimensions and character-
istics. Moreover, these components must be arranged in a periodic pattern. However, this hypothesis can be
accepted for new structures only. The periodic approach is surely incorrect for a very large number of
existing masonry structures, which vice versa have a great cultural and social interest such as in maintaining
and restoring historical and monumental buildings. In order to apply the homogenization theory to old
masonry, a different approach is necessary.

This aspect is the main topic here. The paper is written in the following sequence. First, the main results
in literature about homogenization of masonry are briefly illustrated, underlining the periodicity hypo-
thesis. Then the fundamentals of the mechanics of non-periodic composites are reviewed. This will allow to
introduce the proposed homogenization method based on “‘test-windows”’. The application of the method
is showed by a numerical example considering an actual masonry wall.

2. Periodic masonry structures

Given a heterogeneous body made of materials with different properties and geometry, the homogeni-
zation technique allows to obtain an “equivalent body” (Sanchez-Palencia and Zaoui, 1987; Suquet, 1982).

The first approach to the homogenization of the masonry material is due to Pande et al. (1989).
Assuming continuous head joints and no-slippage between the mortar layers and brick units, the expres-
sions for the elastic properties of the equivalent material were derived in terms of the elastic proprieties of
the brick and mortar together with relative thickness. The proposed homogenization procedure is per-
formed in several steps and its result depends on the sequence of the successive steps (Geymonat et al.,
1987).

In order to describe the average mechanical properties, Pietruszczak and Niu (1992) proposed to
address the influence of head and bed joint separately (concept of a superimposed medium). Considering
the head joints, the homogenized medium was regarded as an orthotropic elastic-brittle material and the
mechanical properties were determined from Eshelby’s (1957) solution to an ellipsoidal inclusion problem
combined with Mori-Tanaka’s mean-field theory (Mori and Tanaka, 1973). Representing the masonry by
a medium stratified with a family of bed joints, which form the weakest link in the microstructure of the
system, the average constitutive relation for the entire composite system was obtained from the aver-
aging rule (Hill, 1963). Under simplified hypothesis about microstructure geometry and micro—macro
quantities relationships, constitutive laws for the homogenized material were also proposed by Maier
et al. (1991).

In order to overcome the previous simplifying hypothesis, Anthoine (1995) proposed a rigorous appli-
cation of the homogenization theory for the periodic media, based on asymptotic analysis (Bensoussan
et al., 1978; Sanchez-Palencia, 1980). Following this approach, the periodicity is characterized by a frame of
reference and it is sufficient to define the mechanical characteristics of the media on a small domain (cell) to
be repeated by translation. The proposed numerical approach for deriving the global elastic coefficients of
masonry takes into account the elasticity of both constituents (brick and mortar) as well as the finite
thickness of the joints.

The constitutive behavior of in plane loaded dry block masonry, with attention to failure analysis, was
analyzed by Alpa and Monetto (1994).

Using the homogenization technique implemented within the framework of the yield design, an ap-
proach to the ultimate strength of brick masonry was proposed by De Buhan and De Felice (1997). In
particular, the masonry was described by a regular assemble of homogeneous brick, obeying a plane stress
failure, separated by joints considered as one-dimensional interface.
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A masonry damage model due to the growth of fractures only in mortar joints was proposed by Luciano
and Sacco (1997, 1998a). In this work, the homogenization theory for material with periodic microstructure
was used to define the overall moduli of the uncracked and cracked masonry (Luciano and Sacco, 1997,
1998b).

A body exhibiting periodic structure is also introduced by Cecchi and Di Marco (2000) and Cecchi and
Sab (2002) to analyze the effect of rigid or elastic blocks in the homogenization of masonry wall.

The previous approaches are based on the periodic structure hypothesis: this involves assuming masonry
formed by regular blocks, with fixed dimensions, and interposed bed and head of mortar. The pattern
formed by the arrangement of bricks and bed of mortar is periodic. However, these features can only be
followed in a new masonry.

When we analyze an old masonry, we find that it is formed by blocks of different dimensions that are
arranged in a non-periodic pattern, with the mortar joints assuming different thickness. In order to apply
the homogenization theory to this type of masonry it is necessary to use a different approach.

3. Fundamentals of the mechanics of non-periodic composites
3.1. Representative volume element

Considering a random composite, the concept of periodic cell, is replaced with that of representative
volume element (RVE): it is defined as a portion of the composite material with the following features
(Aboudi, 1991; Christensen, 1980):

1. Structurally, it is entirely typical of the whole composite on average;
2. Contains a sufficient number of material phases.

If the material is under a macroscopically uniform homogeneous state of stress, i.e. all the material
portions having the dimensions of the RVE undergo the same loading conditions, then for scales smaller
than RVE the actual arrangement of bricks and mortar joints can be considered, whereas for scales greater
than RVE, the composite can be replaced with an homogenized material.

The properties of the homogenized material can be determined by analyzing the RVE: in detail, a
relation between the average values of stresses and strains is established. These average values are defined

as:
1
51127/8’/(1[/
V-Jy

1
Gij = % / O'ijdV
v

These properties can be found by applying a different kind of conditions on the boundary of the RVE.
The boundary conditions can be applied:

(1)

(A) in terms of displacements u;,
u; = S?jxj' (2)

where ¢, are constant strains and x; are point coordinates, or
(B) in term of tractions ¢,

ti = O'g-}’lj (3)
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where ag.

boundary.

are constant stresses and n; are the components of the unit outward normal vector to

The stralns average values in conditions (A) are &; = F while stresses average values in conditions (B)
are 6;, = o\ ;- If it’s possible to find the values of average stresses in case (A) and of average strains in case
(B), the elastic stiffness constants C};, (in the latter case the elastic compliances S;;,), are obtained by:

(A) 6, = C;‘klékl
(B) & = S‘*jkla-kl

1

(4)

For a material composed by two phases, such as masonry, the following expressions for average stresses
and strains are obtained (apex (k) indicates the quantity relative to phase k):
2

i (5)
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where ¢; and ¢, are the fractional concentrations by volume of phases 1 and 2 respectively, and ¢; + ¢, = 1.
By writing the relations between stresses and strains in the phases as

SC R () K V()

i = Cijulkis & = OOk (6)
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O = Ci/kl‘c:klv & = Sijklakl

the following relations between the global average stresses and the average strains in the two phases (and
the analogous between the global average strains and the average stresses in the two phases) can be written:

P (1) +(1) (2) =(2)

0 = c1Cy + Gy 7
s S(l) =(1) + S(Z) ~(2)
&ij = C10yj Ogs T €20y Oy

By writing the relations between the averages on the single phase and the global average as

—(1) - . =2 _ 24
?z(j = Al(jk)l‘(:klv 811/> = Aijk)l‘c"" ®
o) = By o = Bl

(A(1>, A®, BY B® are concentration matrices, where ¢;A" + ¢;A® = Tand ¢,B"Y + ¢,B? =1, 1 being the

unit matrix) it is found that

*
C ki~ = Cl]k]Aljkl + CzC ljkl

* 2)
SijAI ClS leUkl +CZSUkZ ijkl
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where C* and S* of the homogenized medium are defined in terms of the stiffness of the individual phases.

Since the above operations are done on RVE, it is found that C* = (S*)™'. Nevertheless, equations from
(1)—(9) hold for every portion of heterogeneous material, but in this case it is found that the values of C”
and (S*)"" are different.

By assuming particular values of the concentration matrices, approximate values of the effective stiffness
and compliances can be found.

Voight proposed that the strain in the composite be uniform, so AV = A@ =1,

This yields:

Ci\;kl =c lci(jlk>l +e Ci(jzk)l (10)

Reuss proposed that the stress in the composite be uniform, so B’ = B® = 1.
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This yields:
R _ (1) 2)
Sijkl = ClSijkl + C2Sfjk1 (11)

It should be noted that neither of the two assumptions is correct: Voight’s violates equilibrium, while
Reuss’s violates compatibility.

Nevertheless, these two values can still be useful: in fact Hill’s theorem demonstrates that these two
values set limits to the range where the actual stiffness can be found. Writing Voight’s with CV, Reuss’s with
CR (CR = (S®*)™") and with C the actual stiffness, the following chain of inequalities rules:

ct<cgcY (12)

where the order relation X <Y means that z'Xz < z"Yz for any vector z # 0. Anyway, this range is too
wide, in most cases, to be of practical interest, such closer limits have to be determined. In any case, these
limits are still useful to check the correctness of the proposed procedure.

3.2. The solution in terms of boundary conditions
3.2.1. Essential boundary conditions

By applying at RVE the boundary conditions in terms of displacements as given in (2) the following
relation between stiffness and average strains can be found:

0 _ =(2) _ 2) _ () 2)
C?jkzgk/ = Cl,k/SU =0, = cl‘7 )+ €20, = clctjkl‘gkl + cZCzjklgkl = Czjk](sk/ - ngkl ) + C2Cuk]6kl
_ X 2 (1)\=(2)
= ijkl‘('kl + CZ(ijk/ - Cijkl)ﬁkz (13)
(note that stlffness is identified with the over script “e”, because it is determined under essential conditions,

while C"" and C?® are the actual stiffness of the two phases).
Assuming for & the matrix I"”, where I"” is the matrix with all the components set at 0 except for the
component (mn) which is set at 1, it is found that

_ 2 (1) \zmn(2)
C?jmn Cljmn + CQ(Ci/kl - Ci/kl)gkl (14)
where &' ™(2) s the average strain in phase 2 when boundary conditions ; = I}}"x; are applied.

If is easier to work with stresses rather than with strains, Eq. (14) is transformed into

) g 2
Cze/mn = Czjmn + Cz(czjkl Cz/kl)Sklrt @ (15)
where &’ ") is the average stress in phase 2.

It is worth noting that, in order to determine all the components of C° we must use 6 (in the case of space
problem) or 3 (in the case of plane problem) different matrices I, which forms a base for all the possible
values of & (i.e. & can be expressed as & = ky I'" + k1" 4 ki3I + koo 1P + ks 12 + ks 1),

3.2.2. Natural boundary conditions
By applying at the boundary of the test-window conditions in terms of tractions as given in (3) the
following relation between stiffness and average stresses can be found:

2 1) 2 (1) ¢ 0 2
Sz/klakl = Sz/kzakl =&; = Cl? '+ 02'95;) = clSl(jklo-kl + C2S,/k1‘7kz) = Sljlc)l(akl 02% ) + CZSfjk)lo'kl
— g (2) (1)y=(2)
= ijklakl + CZ(Sijkl - Sijkl)akl (16)
(note that comphance is 1dent1ﬁed with the over script ““n”, because it is determined under natural con-
ditions, while SV and S are the actual compliances of the two phases).
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Assuming for ¢° the matrix I"” as defined before, it is found that

S

ijmn

1 2 1)\ =mn(2
= Si<jn1n +o (Sszlc)l - Sz‘(jk)l)o-kl () (17)
where 6Z"<2) is the average stress in phase 2 when boundary conditions ¢ = a?jnj are applied.

To find the stiffness C" it is necessary to invert the compliance, C* = (S") "

4. Homogenization of quasi-periodic masonry—the ‘‘test-window”’ method

It is difficult to identify RVE in old masonry. In fact, for a periodic structure, a periodic cell which, by
opportune translations, generates the whole structure, is used (Anthoine, 1995). In composite material such
as fiber-reinforced ones, it is sufficient to choose a relatively large portion of material, depending on the size
of the inclusions (Ostoja-Starzewski, 1998), to determine the RVE. The definition of the material statistical
homogeneity and the proof of convergence to RVE as the material sample size approaches infinity are
addressed in Huet (1990) and in Sab (1992).

Vice versa, in old masonry the inclusions (the bricks or stones) in the matrix (the mortar) can assume
different relative dimensions and arrangement, depending on the portion of masonry analyzed. So the
masonry can be defined as a “quasi-periodic’’ material, and the identification of the RVE is not possible a
priori (Fig. 1).

. ‘o
. . -~ Periodic cell
"0 0

Composite medium with a
periodic structure

Periodicity

© Oldmasonry

NI

/ SN l-:‘, . Representative
¢/ \ ~ #  volume element SN
| |, "— @B /

=

]

Fiber-reinforced type material

Fig. 1. RVE identification versus material periodicity.
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The method here developed to find the RVE is an iterative one:

—_—

. the first step is to choose the dimensions of a rectangle, the test-window;

2. the test-window is then placed inside masonry and a portion of material (which contains both phases) is
analyzed; it should be noted that the position of the test-window is arbitrary;

3. the next step is to determine the values of the stiffness by assuming boundary conditions in terms of dis-
placements, or essential conditions (14) and (15), and in terms of tractions, or natural conditions (17).
The values obtained using essential conditions differ from those obtained under natural conditions,
and it has been found that C" < C° in agreement with Huet (1990) and Sab (1992);

4. steps 2 and 3 are repeated for different positions of the test-window inside the masonry;

5. then, the average of the C" and C° found for the different positions is calculated, and the values (C" ) and
(C®) are obtained;

6. the effective elastic stiffness components are estimated by:
~. (€M), +(C)y
= # (18)

The range amplitude ¢ is defined as

ce).. — (CM) .
ij Cl*/

(19)

7. the next step is to choose new increased dimensions for the test-window, and to repeat steps from 2 to 6;
8. the iteration is stopped when ¢ is sufficiently small, which is to say that (C") and (C°) are sufficiently
close.

It should be noted that, in general, {(C") and (C®) do not define a range in which the effective value of
stiffness C* can be found. As the dimensions of the test-window increase, (C") and (C° ) converge to C",
which can be estimated by C*.

The test-window is placed in different positions inside the masonry to overcome the quasi-periodicity
of the material: in fact, both in the case of periodic and non-periodic material, the position on the win-
dow does not affect the result, and one could concentrate only on the variation of the dimensions of the
window.

5. Application

The proposed method was applied to determine the stiffness of an actual masonry wall made up of stones
arranged with bed and head of mortar (Fig. 2(a)). The method is applied under the hypothesis of plane
stress. In this way, the problem is completely defined by the three components of stress a1, 05, and g, and
by the three components of strain &, &, and g,.

The masonry object of the study has the following features:

(a) it has an irregular pattern, i.e. the constitutive blocks of stone have different dimensions, although all
the blocks belonging to the same row are about the same height; furthermore, the dimensions do not
change very much when different rows are considered;

(b) the shape of the stones is quite rectangular: it is worth noting that the roundness at the corner of the
brick does not affect the stiffness of the composite in a significant way (Cuomo and Perticone, 1996),
but it increases the difficulties in modeling the masonry.
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Fig. 2. (a) The masonry wall; (b) Simplified geometrical pattern.

Before applying the test-window method, a few steps are necessary to set up the model: the masonry is
first geometrically simplified, i.e. all the block are assumed rectangular and the thickness of the bed of
mortar constant (Fig. 2(b)).

To solve the problem in terms of essential and natural conditions, the FEM is used. The components of
the masonry are assumed to have the elastic properties reported in Table 1.

At first the test-window has small dimensions, but still quite large to contain both stone and mortar
elements. The window is then placed in various positions inside the masonry (four in the present appli-
cation, as in Fig. 3(a)).

The portion of masonry enclosed by any window, with its arrangement of stone and mortar, is then
extracted from the whole and analyzed alone. This portion is modeled with a mesh of finite elements of two

Table 1
Mechanical properties of the masonry phases
Phase Material Young’s module, Poisson’s Stiffness components (MPa)
E (MPa) coefficient, v
Cun Cpp Cy Cy
1 Stone 12,500 0.20 13,021 2604 13,021 10,417

Mortar 1200 0.30 1319 396 1319 923
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(c) (d)

Fig. 3. Position of the test-windows inside the masonry wall: (a) test-windows dimensions 150 x 150 mm; (b) 225 x 225 mm; (c) 300 x 300
mm; (d) 375% 375 mm.

Fig. 4. Finite element model of the test-window 150x 150 mm in position D (see Fig. 3): elements type | are stone material, type 2 are
mortar material.

types, one representing the stone material (phase 1) and the other the mortar material (phase 2). Fig. 4
shows the model of the test-window in position D. It is worth noting that the amount of stone and mortar
enclosed by the windows depends on the position of the window, so different values of Reuss’s and Voight’s
limits are obtained for different positions.
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Fig. 5. Boundary conditions of the test-window: (a) essential conditions (in terms of nodal displacements); (b) natural conditions
(in terms of nodal forces).

Table 2
Components of the stiffness tensor (MPa) at the different positions and for increasing size of the test-window (see Fig. 3): (a) test-
windows dimensions 150x 150 mm; (b) 225225 mm; (c) 300 x 300 mm; (d) 375x375 mm

Essential Natural Estimates

ij Posi- Posi- Posi- Posi- (C®) Posi- Posi- Posi- Posi- (c™y c* [
tion A tionB tionC tion D tion A tionB tionC tion D

(a)

11 6758 9035 10,405 10,390 9147 5693 7985 8960 8570 7802 8475 0.159

12 947 1385 1238 1401 1243 873 1177 1060 1222 1083 1163 0.137

22 5586 7791 5809 7153 6585 5048 6675 4673 6417 5703 6144 0.143

33 4344 6535 5846 6304 5757 3390 4745 3822 4871 4207 4982 0.311

(b)

11 8377 8980 8545 9506 8852 7463 8237 7867 8500 8017 8434 0.099

12 1250 1166 1124 1456 1249 1118 1082 1046 1311 1139 1194 0.092

22 7223 6267 6189 8214 6973 6511 5719 5781 7652 6416 6695 0.083

33 5702 5297 5139 6484 5656 4594 4367 4203 5465 4657 5156 0.194

(c)

11 8114 8241 9143 8057 8389 7361 7654 8538 7509 7766 8077 0.077

12 1162 1179 1290 1063 1174 1082 1110 1199 1001 1098 1136 0.066

22 6880 6927 7222 5942 6743 6478 6520 6698 5394 6273 6508 0.072

33 5266 5368 5857 4824 5329 4487 4604 4884 4009 4496 4912 0.170

(d)

11 7518 7969 8810 8630 8232 6886 7614 8408 8164 7768 8000 0.058

12 1063 1056 1122 1159 1100 1000 1012 1069 1082 1041 1070 0.055

22 6347 6005 6136 6440 6232 5927 5612 5693 6095 5832 6032 0.066

33 4750 4750 5044 5160 4926 4124 4138 4305 4499 4267 4596 0.143
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Table 3

Components of the stiffness tensor (MPa) of the entire panel
ij Essential C* Natural C Estimates

c s
11 7992 7889 7940 0.013
12 1023 1016 1020 0.007
22 5691 5596 5644 0.017
33 4149 3912 4030 0.059
c11

10000
9500
9000

8500
8000
7500
7000

150x150 2254225 300x300 375375 entire panel

8000
7500
7000

6500 <Ce M‘H\
6000 F*m'"'"::::::::::::;:::==‘

lnemrnaaa i iaEaiE
5500 {(:n
5000

150x150 225x325 300x300 375x375 entire panel

C
1500 12
1400
1]
1300 (C )
1200 g
R

1100 ; '\'d_ _::::::::::=============--l
1000 z

C
900 o/
800 _

150x150 225x225 300x300 3752375 entire panel
6500
6000
5500
5000
4500
4000
3500

150x150 225x225 300x300 375x375 entire panel

Fig. 6. Stiffness coefficients (MPA) (C°) (#), (C") (A) and C* (M) versus test-window size increasing and of the entire panel.

In order to calculate C° and C" two different restraint and load conditions are considered.

In the first, essential conditions at the boundary in terms of (2) are applied: all the nodes of the boundary
are restrained and then assigned displacements. In the second, natural conditions at the boundary in terms
of (3) are applied: forces on all the nodes of the boundary are applied.
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Furthermore, it is necessary to run the analysis three times for each model, since three different matrices
I"" are required to determine the nine components of C® and C" (Fig. 5).

Adopting finite elements of the same size (Fig. 4) the mean values of the stresses and the fraction
concentration ¢, are immediately calculated. Given the stone and mortar characteristics (Table 1), the C°
and C" stiffness are obtained by means of (15) and (17) respectively.

In this way C° and C" for the assigned dimensions of test-window and for the different positions of the
test-window inside the masonry are available. The averages (C°) and (C") can be calculated, as the esti-
mated stiffness C* and the range amplitude ¢ by means of (18) and (19).

When 0 is smaller than a prefixed value ., the value of C” can be used as characteristic of the masonry,
C* = C". Otherwise, the dimensions of the test-window are increased and new calculations are done.

In the present application, the procedure has been iterated four times, with the dimensions illustrated in
Fig. 3 (it should be noted that, although the test-window was increased in size, its position inside the
masonry is fixed). The obtained results for essential and natural conditions are reported in Table 2. In order
to assess accuracy of the proposed approach, the C°® and C" of the entire masonry panel have been obtained
by applying the same boundaries conditions. The results are reported in Table 3.

The estimation of the stiffness components versus the test-window dimensions increasing and of the
entire panel (with dimensions: 1657.5x690 mm) are shown in Fig. 6. It should be noted that after four
iteration a good convergence is reached.

6. Conclusions

In this paper, a homogenization approach has been proposed to analyze quasi-periodic masonry
structures. This approach is based on the concept of RVE which replaces the periodic cell one proposed in
literature for periodic pattern.

The RVE is found by using test-window method and by increasing its finite dimensions.

Then the homogenized medium stiffness tensor is obtained by means of the hierarchy of estimates rel-
ative to essential and natural boundary conditions with an ensemble average, which is performed on space
taking into account different test-window locations on structure. This allows to consider the local heter-
ogeneity of microstructure, increasing the convergence rate and estimates reliability in this way.

A numerical application highlights the effectiveness of the method. In fact, the variation range of the
stiffness tensor coefficients was very narrow in limited number of iterations.

The obtained results showed that proposed approach can be used to analyze actual masonry built with
blocks having different dimensions, mortar joints having different thickness, which are arranged in a quasi-
periodic pattern. Moreover, it can be easily applied to tri-dimensional elastic problem by considering
masonry structures with mechanical and geometrical properties varying in thickness.
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